Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Biochemistry and biophysics reports ; 34:101452-101452, 2023.
Article in English | EuropePMC | ID: covidwho-2266547

ABSTRACT

d-Amino acids, rare enantiomers of amino acids, have been identified as biomarkers and therapeutic options for COVID-19. Methods for monitoring recovery are necessary for managing COVID-19. On the other hand, the presence of SARS-CoV2 virus in the blood is associated with worse outcomes. We investigated the potential of d-amino acids for assessing recovery from severe COVID-19. In patients with severe COVID-19 requiring artificial ventilation, the blood levels of d-amino acids, including d-alanine, d-proline, d-serine, and d-asparagine, which were lower than the normal range before treatment, quickly and transiently increased and surpassed the upper limit of the normal range. This increase preceded the recovery of respiratory function, as indicated by ventilation weaning. The increase in blood d-amino acid levels was associated with the disappearance of the virus in the blood, but not with inflammatory manifestations or blood cytokine levels. d-Amino acids are sensitive biomarkers that reflect the recovery of the clinical course and blood viral load. Dynamic changes in blood d-amino acid levels are key indicators of clinical course.

2.
Biochem Biophys Rep ; 34: 101452, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2266548

ABSTRACT

d-Amino acids, rare enantiomers of amino acids, have been identified as biomarkers and therapeutic options for COVID-19. Methods for monitoring recovery are necessary for managing COVID-19. On the other hand, the presence of SARS-CoV2 virus in the blood is associated with worse outcomes. We investigated the potential of d-amino acids for assessing recovery from severe COVID-19. In patients with severe COVID-19 requiring artificial ventilation, the blood levels of d-amino acids, including d-alanine, d-proline, d-serine, and d-asparagine, which were lower than the normal range before treatment, quickly and transiently increased and surpassed the upper limit of the normal range. This increase preceded the recovery of respiratory function, as indicated by ventilation weaning. The increase in blood d-amino acid levels was associated with the disappearance of the virus in the blood, but not with inflammatory manifestations or blood cytokine levels. d-Amino acids are sensitive biomarkers that reflect the recovery of the clinical course and blood viral load. Dynamic changes in blood d-amino acid levels are key indicators of clinical course.

3.
Clin Exp Nephrol ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2264029

ABSTRACT

BACKGROUND: A certain number of patients with coronavirus disease 2019 (COVID-19), particularly those who test positive for SARS-CoV-2 in the serum, are hospitalized. Further, some even die. We examined the effect of blood adsorption therapy using columns that can eliminate SARS-CoV-2 on the improvement of the prognosis of severe COVID-19 patients. METHODS: This study enrolled seven patients receiving mechanical ventilation. The patients received viral adsorption therapy using SARS-catch column for 3 days. The SARS-catch column was developed by immobilizing a specific peptide, designed based on the sequence of human angiotensin-converting enzyme 2 (hACE2), to an endotoxin adsorption column (PMX). In total, eight types of SARS-CoV-2-catch (SCC) candidate peptides were developed. Then, a clinical study on the effects of blood adsorption therapy using the SARS-catch column in patients with severe COVID-19 was performed, and the data in the present study were compared with historical data of severe COVID-19 patients. RESULTS: Among all SCC candidate peptides, SCC-4N had the best adsorption activity against SARS-CoV-2. The SARS-catch column using SCC-4N removed 65% more SARS-CoV-2 than PMX. Compared with historical data, the weaning time from mechanical ventilation was faster in the present study. In addition, the rate of negative blood viral load in the present study was higher than that in the historical data. CONCLUSION: The timely treatment with virus adsorption therapy may eliminate serum SARS-CoV-2 and improve the prognosis of patients with severe COVID-19. However, large-scale studies must be performed in the future to further assess the finding of this study (jRCTs052200134).

4.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166584, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2082535

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19), biomarkers for evaluating severity, as well as supportive care to improve clinical course, remain insufficient. We explored the potential of d-amino acids, rare enantiomers of amino acids, as biomarkers for assessing disease severity and as protective nutrients against severe viral infections. In mice infected with influenza A virus (IAV) and in patients with severe COVID-19 requiring artificial ventilation or extracorporeal membrane oxygenation, blood levels of d-amino acids, including d-alanine, were reduced significantly compared with those of uninfected mice or healthy controls. In mice models of IAV infection or COVID-19, supplementation with d-alanine alleviated severity of clinical course, and mice with sustained blood levels of d-alanine showed favorable prognoses. In severe viral infections, blood levels of d-amino acids, including d-alanine, decrease, and supplementation with d-alanine improves prognosis. d-Alanine has great potentials as a biomarker and a therapeutic option for severe viral infections.


Subject(s)
COVID-19 Drug Treatment , Communicable Diseases , Influenza, Human , Mice , Animals , Humans , Influenza, Human/drug therapy , Alanine/therapeutic use , SARS-CoV-2 , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL